## Application

The EFJ-430 extruded aluminum louver is designed for intake and exhaust application where protection against water infiltration is not critical. The EFJ-430 is well suited for special shape applications and is available with hidden mullions for a continuous blade appearance of multiple section assemblies. The EFJ-430 is available in a wide array of anodized and painted finishes including custom color matching.

## Standard Construction

Material: Mill finish 6063-T5 extruded aluminum.
Frame: 4 " deep $\times 0.081$ " thick $(102 \times 2)$ channel.
Blades: $30^{\circ} \times 0.081^{\prime \prime}(2)$ thick J-style.
Screen: ${ }^{1 / 2 "} \times 0.063^{\prime \prime}(12.7 \times 1.6)$ expanded and flattened aluminum.

Minimum Size: $4.5^{\prime \prime} \times 7.5^{\prime \prime}(114 \times 190)$
Maximum Size: Single section: 60" $\times 120$ " $(1524 \times 3048)$
$120 " \times 60^{\prime \prime}(3048 \times 1524)$
Multiple section: Unlimited

## Options

$\square$ Factory finish:
$\square$ High Performance Fluoropolymer - 100\% resin Newlar®/ 70\% resin Kynar ${ }^{\text {® }}$Baked EnamelClear or Color Anodized, Class 1Prime CoatHidden vertical mullion for continuous blade appearance.Flange Frame:
$\square 1 \frac{1}{2 \prime \prime}$ (38) flange frame
$\square$ Custom-sized flangeStucco flangeGlazing frame
Installation hardwareClip angles
Continuous anglesBurglar Bars:
$\square$ Shipped looseShipped mounted

## $\square$ Frame closure.

$\square$ Welded construction.
$\square$ Alternate bird or insect screens.
$\square$ Insulated or non-insulated blank-off panels.
$\square$ Filter racks.
$\square$ Hinged frame.
$\square$ Head and/or sill flashing.

## Ratings

Free Area: [48" $\times 48$ " (1219 $\times 1219$ ) unit]: $9.6 \mathrm{ft}^{2}\left(0.89 \mathrm{~m}^{2}\right)$ 59.6\%

Performance @ Beginning Point of Water Penetration Free Area Velocity: $\quad 1002$ fpm ( $5.09 \mathrm{~m} / \mathrm{s}$ ) Air Volume Delivered: $8549 \mathrm{cfm}\left(4.51 \mathrm{~m}^{3} / \mathrm{s}\right)$ Pressure Loss: $\quad 0.16$ in.wg. ( 41 Pa )
Velocity @ 0.15 in. wg. Pressure Loss: $960 \mathrm{fpm}(4.87 \mathrm{~m} / \mathrm{s})$
Design Load: 30 psf


Model EFJ-430
(standard)
*Louver dimensions furnished approximately $1 / 2^{\prime \prime}(13)$ undersize.

Vertical Section
${ }^{\dagger}$ Screen adds approximately $3 / 16^{\prime \prime}(5)$ to louver depth.


Horizontal Mullion (standard)


NOTE: Dimensions in parentheses ( ) are millimeters.

| Width (Inches) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 | 96 | 102 | 108 | 114 | 120 |
|  | 12 | 0.4 | 0.6 | 0.8 | 1.1 | 1.3 | 1.5 | 1.8 | 2.0 | 2.2 | 2.4 | 2.7 | 2.9 | 3.1 | 3.4 | 3.6 | 3.8 | 4.0 | 4.3 | 4.5 |
|  | 18 | 0.6 | 1.0 | 1.4 | 1.8 | 2.2 | 2.5 | 2.9 | 3.3 | 3.7 | 4.1 | 4.5 | 4.8 | 5.2 | 5.6 | 6.0 | 6.4 | 6.8 | 7.1 | 7.5 |
|  | 24 | 1.0 | 1.6 | 2.1 | 2.7 | 3.3 | 3.9 | 4.5 | 5.1 | 5.6 | 6.2 | 6.8 | 7.4 | 8.0 | 8.6 | 9.1 | 9.7 | 10.3 | 10.9 | 11.5 |
|  | 30 | 1.2 | 2.0 | 2.7 | 3.4 | 4.2 | 4.9 | 5.7 | 6.4 | 7.1 | 7.9 | 8.6 | 9.3 | 10.1 | 10.8 | 11.6 | 12.3 | 13.0 | 13.8 | 14.5 |
|  | 36 | 1.5 | 2.4 | 3.3 | 4.2 | 5.0 | 5.9 | 6.8 | 7.7 | 8.6 | 9.5 | 10.4 | 11.3 | 12.2 | 13.1 | 14.0 | 14.8 | 15.7 | 16.6 | 17.5 |
|  | 42 | 1.7 | 2.8 | 3.8 | 4.9 | 5.9 | 7.0 | 8.0 | 9.1 | 10.1 | 11.1 | 12.2 | 13.2 | 14.3 | 15.3 | 16.4 | 17.4 | 18.4 | 19.5 | 20.5 |
|  | 48 | 2.1 | 3.3 | 4.6 | 5.8 | 7.1 | 8.3 | 9.6 | 10.8 | 12.0 | 13.3 | 14.5 | 15.8 | 17.0 | 18.3 | 19.5 | 20.8 | 22.0 | 23.3 | 24.5 |
|  | 54 | 2.3 | 3.7 | 5.1 | 6.5 | 7.9 | 9.3 | 10.7 | 12.1 | 13.5 | 14.9 | 16.3 | 17.7 | 19.1 | 20.5 | 21.9 | 23.3 | 24.7 | 26.1 | 27.5 |
|  | 60 | 2.6 | 4.1 | 5.7 | 7.2 | 8.8 | 10.4 | 11.9 | 13.5 | 15.0 | 16.6 | 18.1 | 19.7 | 21.2 | 22.8 | 24.3 | 25.9 | 27.4 | 29.0 | 30.5 |
|  | 66 | 2.9 | 4.7 | 6.4 | 8.2 | 9.9 | 11.7 | 13.5 | 15.2 | 17.0 | 18.7 | 20.5 | 22.2 | 24.0 | 25.7 | 27.5 | 29.2 | 31.0 | 32.8 | 34.5 |
|  | 72 | 3.2 | 5.1 | 7.0 | 8.9 | 10.8 | 12.7 | 14.6 | 16.5 | 18.4 | 20.4 | 22.3 | 24.2 | 26.1 | 28.0 | 29.9 | 31.8 | 33.7 | 35.6 | 37.5 |
|  | 78 | 3.4 | 5.5 | 7.6 | 9.6 | 11.7 | 13.7 | 15.8 | 17.9 | 19.9 | 22.0 | 24.1 | 26.1 | 28.2 | 30.2 | 32.3 | 34.4 | 36.4 | 38.5 | 40.5 |
|  | 84 | 3.8 | 6.0 | 8.3 | 10.6 | 12.8 | 15.1 | 17.4 | 19.6 | 21.9 | 24.1 | 26.4 | 28.7 | 30.9 | 33.2 | 35.5 | 37.7 | 40.0 | 42.2 | 44.5 |
|  | 90 | 4.0 | 6.4 | 8.9 | 11.3 | 13.7 | 16.1 | 18.5 | 20.9 | 23.4 | 25.8 | 28.2 | 30.6 | 33.0 | 35.4 | 37.9 | 40.3 | 42.7 | 45.1 | 47.5 |
|  | 96 | 4.3 | 6.9 | 9.4 | 12.0 | 14.6 | 17.1 | 19.7 | 22.3 | 24.8 | 27.4 | 30.0 | 32.6 | 35.1 | 37.7 | 40.3 | 42.8 | 45.4 | 48.0 | 50.5 |
|  | 102 | 4.6 | 7.4 | 10.2 | 12.9 | 15.7 | 18.5 | 21.3 | 24.0 | 26.8 | 29.6 | 32.3 | 35.1 | 37.9 | 40.7 | 43.4 | 46.2 | 49.0 | 51.7 | 54.5 |
|  | 108 | 4.9 | 7.8 | 10.7 | 13.7 | 16.6 | 19.5 | 22.4 | 25.4 | 28.3 | 31.2 | 34.1 | 37.1 | 40.0 | 42.9 | 45.8 | 48.8 | 51.7 | 54.6 | 57.5 |
|  | 114 | 5.1 | 8.2 | 11.3 | 14.4 | 17.4 | 20.5 | 23.6 | 26.7 | 29.8 | 32.8 | 35.9 | 39.0 | 42.1 | 45.2 | 48.2 | 51.3 | 54.4 | 57.5 | 60.6 |
|  | 120 | 5.5 | 8.7 | 12.0 | 15.3 | 18.6 | 21.9 | 25.2 | 28.4 | 31.7 | 35.0 | 38.3 | 41.6 | 44.8 | 48.1 | 51.4 | 54.7 | 58.0 | 61.2 | 64.5 |

Pressure Loss


Louver Test Size $=48^{\prime \prime} \times 48^{\prime \prime}(1219 \times 1219)$
Pressure loss tested in accordance with Figure 5.5 of AMCA Standard 500-L.

## Water Penetration

AMCA defines the beginning point of water penetration as the free area velocity at the intersection of a simple linear regression of test data and the line of 0.01 ounces of water per square foot of free area and is measured through a 48" $\times$ 48 " louver during a 15 minute period. The AMCA water penetration test provides a method for comparing louver models and designs as to their efficiency in resisting the penetration of rainfall under specific lab conditions. All-Lite recommends that intake louvers are selected with a reasonable margin of safety below the beginning point of water penetration in order to avoid unwanted penetration during severe storm conditions.

## Selection Criteria

Follow the steps listed below to calculate the louver size needed to satisfy the required air volume while minimizing the adverse effects of water penetration and pressure loss.

1. Determine the Free Area Velocity (FAV) at the maximum allowable pressure loss using the Pressure Loss chart to the left. While job conditions vary, typically, the maximum allowable pressure loss should not exceed 0.15 in.wg., and the FAV for 0.15 in.wg. pressure loss is listed on the front page of this sheet.
2. Intake Applications If the FAV at the Beginning Point of Water Penetration (shown below) is less than the FAV from step 1, then use the FAV at the Beginning Point of Water Penetration in step 3, otherwise use the FAV from step 1.

Exhaust Applications Use the FAV from step 1 in step 3.
3. Calculate the total louver square footage required using the following equation.
Required Air Volume
$\mathrm{fm} \div$ $\qquad$ fpm = $\qquad$ $\mathrm{ft}^{2}$
FAV Required Louver (Fr
4. Using the Free Area chart above, select a louver width and height that yields a free area $\mathrm{ft}^{2}$ greater than or equal to the required louver size calculated in step 3.

## Water Penetration



